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Overview

Continental winds, ranging from mild gusts to severe gales, play a pivotal role in shaping
weather patterns and influencing climatic conditions across vast landmasses. While often
less dramatic than their tropical counterparts, these noncyclonic strong winds can have
damaging impacts on human activities and infrastructure. The challenge in effectively
modeling and predicting continental wind patterns lies in the complexity of terrestrial
landscapes and the myriad factors influencing wind behavior. Publicly available data on
continental winds is often limited in scope and resolution, failing to capture the local
variances caused by topographical features like mountains and valleys. This lack of
detailed data impedes the ability of planners and engineers to adequately prepare for and
mitigate the risks associated with high wind events.

This document describes the UrbanFootprint Strong Winds methodology, which aims to
close this gap by producing a dataset containing probabilities of exceedance of given
wind speeds for CONUS in an H3 zoom level 5 grid. We estimate these probabilities using
a Bayesian hierarchical model consisting of a station model that describes the probability
distribution parameters at each of our observed locations, and a spatial model that
describes how these parameters change in space. The figure below shows sample results
showing the probability of exceedance for 55 mph winds:

This dataset can be used as a general indicator of exposure to various wind speeds.
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Source Data

Standardized Extreme Wind Speed Database for the United States
➔ Source: National Institute of Standards and Technology
➔ Link: Standardized extreme wind speed database for the United States

Internal H3 Digital Elevation Model
UrbanFootprint produces a priority DEM on a zoom 11 resolution H3 grid derived from
3DEP 3D Elevation Program | U.S. Geological Survey.
➔ Source: UrbanFootprint

Geographic Names Information System
➔ Source: USGS
➔ Link: Geographic Names Information System (GNIS) | U.S. Geological Survey

U.S. Wind Turbine Database
➔ Source: USGS
➔ Link: U.S. Wind Turbine Database
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Specifications

Wind Speeds
Wind speeds are presented as 1-minute sustained winds. The primary motivation for this
is to bring it to parity with our Hurricane Winds Methodology, for which the standard is
1-minute winds due to the Saffir-Simpson scale. Because the source dataset is in
3-second winds, we apply a conversion factor (see Table 1) to convert this data to
1-minute winds.

The table below shows the conversion factors we used in our work for converting
between wind speeds.

Table 1: Wind Speed Conversions

Source wind speed Target wind speed

3-second 1-minute 10-minute

10-minute 1.38 1.14 1.0

1-minute 1.23 1.0 –

3-second 1.0 – –

Spatial Resolution
The UrbanFootprint Strong Winds results are presented on a zoom level 5 H3 grid.

Spatial Extent
Risk data related to noncyclonic winds is estimated for the entirety of CONUS.

Methodology

Assumptions
We assume that the frequency and intensity of noncyclonic strong winds are not
changing as a result of global climate change. While tropical cyclones, and to a much
lesser extent tornadoes, appear to be changing in frequency, intensity, or location, there
is not currently any evidence to support any changes to noncyclonic winds.
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State of the dataset
Each of the stations in the Standardized Extreme Wind Speed Database for the United
States provides a number of readings of so-called “extreme” wind events. Given that
these stations are set up in different environments and with different equipment, the
National Institute of Standards and Technology (NIST) attempts to standardize the data to
ensure that these readings are comparable across stations. NIST converted wind speed
data measured at elevation z over terrain with roughness length zo and averaged over
time t to standardized conditions z = 10 m, z0 = 0.03 m and t = 3 s.

Even after this standardization, there are some inconsistencies among stations:
1. Stations were set up on different years, and thus have different total years of

measurement (ranging from 0 to around 40 years).
2. Stations sometimes go offline, leading to gaps in the measurements.
3. Stations have different and undocumented thresholds for what constitutes an

“extreme” wind event. For example, some stations will not record anything lower
than 32mph, while others will not record anything lower than 37mph. Inspection of
the data suggests that these thresholds are also changing with time.

Given these conditions, estimating the distribution tails using the Peaks Over Threshold
approach (as was done in the UrbanFootprint Hurricane Winds Methodology) is unlikely
to fit successfully across all stations. Therefore, we propose a different approach that
simultaneously estimates the distribution across all stations. The advantage of our
approach is that the estimation of the distribution at a station is not limited to
measurements from that station, but rather can take into account measurements from
other stations as well as additional input features.

This dataset also separates wind speeds according to whether they came from a
thunderstorm or a non-thunderstorm. Because the underlying wind distributions from
thunderstorms and non-thunderstorms are different (thunderstorms are rarer but more
intense), it is important to estimate their distributions separately. While we describe a
single model below and refer to “winds” generically to keep the text concise, in reality we
are applying the same process to thunderstorm and non-thunderstorm winds separately
and independently. Once both models are fitted, we reconcile the output for both models
to produce a single, combined noncyclonic strong wind dataset.

Model Description
We use a Bayesian hierarchical model to estimate the distribution of highest annual wind
speed at each station. In this hierarchical model, we have a station process, which
describes the distribution of wind speeds at a station given some parameters, and a
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spatial process, which describes how the station parameters vary across the United
States. We use PyMC to define and train our model.

Station Process

In our station process, we apply the block maxima approach from Extreme Value Theory.
In this approach, we consider a dataset of annual maximum wind speeds and attempt to
model the distribution of these maximum wind speeds for any given year. Typically,
annual maxima are modeled as a Gumbel distribution, which is the approach we take
here. For a station , we assume the maximum wind speed follows a Gumbel prior
distribution with parameters and ,

.

It is worth noting that this station process assumes we have one such dataset of annual
maximum winds. Recall that in our dataset, measurements are only reported if they are
considered “extreme” (the definition of which varies across stations). It is possible that in
a given year there were no such “extreme” wind events, and as a result, there are no
measurements for that year at that station. This left censoring of extreme wind values has
the effect of overestimating the probability of a high wind speed event since lower wind
speed years are not included in the dataset. Furthermore, it is also possible that a station
was offline for a period of time where there was the “true” maximum wind speed for that
year, but since it was not recorded some other high wind speed event was noted as the
maximum. This would have the effect of underestimating the probability of a high
wind-speed event.

Since both mechanisms have opposite effects, it is difficult to assess whether a
distribution fit on a single station would underestimate or overestimate. This underscores
the importance of estimating all distributions jointly since both of these effects would
have to be systemic across stations for them to affect the overall performance of the
model. Given that both mechanisms are specific to a single station, it is unlikely that that
would be the case.

Spatial Process

In our spatial process, we consider the distribution of the parameters and across the
United States. From prior experiments, we know that there is a strong spatial component
to the distribution of . On the other hand, the distribution of seems to be less
dependent on the location of the station. Thus, we model

.
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https://www.pymc.io/welcome.html
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=w_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=w_i%20%5Csim%20%5Ctext%7BGumbel%7D(%5Cmu_i%2C%20%5Cbeta)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
http://www.texrendr.com/?eqn=%5Cbeta%20%5Csim%20%5Ctext%7B%5CGamma%7D(%5Ceta%2C%20%5Ctheta)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmu_i%20%5Csim%20%5Cmathcal%7BGP%7D(m(%5Cmathbf%7Bx%7D)%2C%20k(%5Cmathbf%7Bx%7D%2C%20%5Cmathbf%7Bx'%7D))#0


Here, and each represent a vector of input features. The parameters and are
determined empirically so that the distribution for has 95% of the probability density
between 5 and 15. These bounds were chosen because repeated tests showed the
posterior distribution of had most of its density around the value 10. GP is a Gaussian
process with mean parameter and kernel .

From empirical tests, we found that setting produces good results. For our kernel,
we use the Matérn kernel with , which is defined in the one-dimensional case as:

where, is the length scale associated with a specific input feature. We model as a
Gamma distribution:

.

Input features
At each station, we use the following input features as predictors of the station
parameters:

Input feature Rationale

y coordinate in EPSG:5070 Wind patterns change as you move farther
from the equator

x coordinate in EPSG:5070 There could be some more minor wind
pattern changes in moving from east to
west

Mean elevation at zoom 11 At higher elevations, wind speeds tend to
be faster because there is less surface
friction compared to lower elevations

Standard deviation of elevation at zoom 5 A bumpier macro-level topography could
affect wind patterns

Distance to coastline Major water bodies can create
temperature gradients that can influence
wind speeds

Distance to nearest mountain Wind can be blocked by large obstacles
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https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=l#0
https://www.codecogs.com/eqnedit.php?latex=l%20%5Csim%20%5CGamma(1%2C%201)#0


such as mountains, creating wind shadows
with lower speeds

Distance to nearest valley Wind can be channeled through valleys,
creating wind corridors with higher speeds

Total rated wind turbine capacity within 50
km

Presumably, wind turbines are put in
places where there is high wind already,
and thus are themselves signals for higher
winds

Each of these features are normalized by subtracting the mean and dividing by the
standard deviation.

Training the model
We follow a traditional machine learning workflow for training our model. We divide our
stations into an 80/20 split to create a training set and testing set. Note that we divide the
stations, not the measurements. This means that while the number of stations in the
training set and testing set follow the 80/20 split, the number of measurements does not.

Because the density of stations across the United States is not uniform, we follow a
stratified splitting approach to create the training and test data. We first cluster the
stations on their spatial coordinates into 10 clusters. The number of clusters was
determined empirically using the standard elbow method. Within each cluster, we then
randomly divide the stations so that 80% are in the training data and 20% are in the
testing dataset.

We train our model using Automatic Differentiation Variational Inference (ADVI) over 100k
iterations. During model development, we also trained smaller instances of our model
using MCMC sampling (specifically using a NUTS sampler) and found that the posterior
distributions were generally unimodal, which makes ADVI a reasonable choice in order to
scale up our model. Validation against our test set showed that the model’s posterior
distributions emulate the observed distributions very well.

Posterior predictive sampling on unobserved locations
To validate our model and predict on the H3 zoom level 5 grid, we first take 1000 samples
from the posterior distribution for the station parameters. Then, we perform posterior
predictive sampling on the testing set and the prediction set based on those 1000
samples. Finally, we estimate the probability of exceedance by using a Gumbel
distribution with the mean of the sampled parameters at each location. We calculate the
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probability of exceedance for all wind speeds between 30 mph (13.4 m/s) and 100 mph
(44.7 m/s) in 1 mph increments.

Our validation results are shown separately for non-thunderstorm and thunderstorm
winds. An example of one set of results is shown below.

The image on the left shows a QQ Plot, which plots the quantiles of the station data
against the quantiles for the sampled posterior distribution of the same station. We want
the points of the plot to be as close to the red 45-degree line as possible. The title of the
plot shows the p-value for a Kolmogorov–Smirnov test that tests whether both samples
come from the same distribution. A value of less than 0.01 would be considered a failure,
though it’s not necessarily disqualifying of the model.

The middle plot shows the distribution of the empirical data in blue and the simulated data
in orange. We want both of the distributions to be as close to each other as possible.
Finally, the right plot shows the empirical CDF in blue and the simulated CDF in orange.
Again, we want the two lines to follow each other as closely as possible.

Generally, we found that our model followed the data quite well for the majority of
stations, especially the majority of stations with at least 15 observations.

Producing the final probability of exceedance dataset
After independently fitting models for both thunderstorms and non-thunderstorms using
the procedures described previously, we now have rates of exceedance for
thunderstorms and non-thunderstorms separately. To calculate the overall rate of wind
exceedance, we follow the approach from Lombardo et al (2009), where we assume that
the thunderstorm and non-thunderstorm events are fully independent. Let be the
maximum thunderstorm wind speed in a year, be the maximum non-thunderstorm
wind speed in a year. We're ultimately interested in , the probability
that either the maximum thunderstorm or non-thunderstorm wind speed is greater than
some threshold . From the relationship between union and intersection:
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We can express the relationship above in terms of the data we’ve already calculated by
using our independence assumption:

Thus, to calculate the probability that any wind will be greater than a threshold, we simply
combine our outputs for thunderstorms and non-thunderstorms using the relationship
above.
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